Matrices Satisfying Regular Minimality
نویسندگان
چکیده
A matrix of discrimination measures (discrimination probabilities, numerical estimates of dissimilarity, etc.) satisfies Regular Minimality (RM) if every row and every column of the matrix contains a single minimal entry, and an entry minimal in its row is minimal in its column. We derive a formula for the proportion of RM-compliant matrices among all square matrices of a given size and with no tied entries. Under a certain "meta-probabilistic" model this proportion can be interpreted as the probability with which a randomly chosen matrix turns out to be RM-compliant.
منابع مشابه
GENERALIZED REGULAR FUZZY MATRICES
In this paper, the concept of k-regular fuzzy matrix as a general- ization of regular matrix is introduced and some basic properties of a k-regular fuzzy matrix are derived. This leads to the characterization of a matrix for which the regularity index and the index are identical. Further the relation between regular, k-regular and regularity of powers of fuzzy matrices are dis- cussed.
متن کاملE-Clean Matrices and Unit-Regular Matrices
Let $a, b, k,in K$ and $u, v in U(K)$. We show for any idempotent $ein K$, $(a 0|b 0)$ is e-clean iff $(a 0|u(vb + ka) 0)$ is e-clean and if $(a 0|b 0)$ is 0-clean, $(ua 0|u(vb + ka) 0)$ is too.
متن کاملRegular sets of matrices and applications
Suppose A 1 ; ; A s are (1;?1) matrices of order m satisfying (4) Call A 1 ; ;A s a regular s-set of matrices of order m if (1), (2), (3) are satissed and a regular s-set of regular matrices if (4) is also satissed, these matrices were rst discovered by J. Seberry and A. L. Whiteman in \New Hadamard matrices and conference matrices obtained via Mathon's construction", Graphs and Combinatorics, ...
متن کاملSemigroup identities in the monoid of two-by-two tropical matrices
We show that the monoid M2(T) of 2 × 2 tropical matrices is a regular semigroup satisfying the semigroup identity A2B4A2A2B2A2B4A2 =A2B4A2B2A2A2B4A2. Studying reduced identities for subsemigroups of M2(T), and introducing a faithful semigroup representation for the bicyclic monoid by 2 × 2 tropical matrices, we reprove Adjan’s identity for the bicyclic monoid in a much simpler way.
متن کاملMutation Classes of Skew-symmetrizable 3× 3 Matrices
Mutation of skew-symmetrizable matrices is a fundamental operation that first arose in Fomin-Zelevinsky’s theory of cluster algebras; it also appears naturally in many different areas of mathematics. In this paper, we study mutation classes of skew-symmetrizable 3 × 3 matrices and associated graphs. We determine representatives for these classes using a natural minimality condition, generalizin...
متن کامل